pomerol  2.1
Data Structures | Public Member Functions | Friends
Pomerol::GreensFunctionPart Class Reference

Part of a fermionic single-particle Matsubara Green's function. More...

#include <GreensFunctionPart.hpp>

Inheritance diagram for Pomerol::GreensFunctionPart:
Inheritance graph
[legend]
Collaboration diagram for Pomerol::GreensFunctionPart:
Collaboration graph
[legend]

Public Member Functions

 GreensFunctionPart (MonomialOperatorPart const &C, MonomialOperatorPart const &CX, HamiltonianPart const &HpartInner, HamiltonianPart const &HpartOuter, DensityMatrixPart const &DMpartInner, DensityMatrixPart const &DMpartOuter)
 
void compute ()
 Compute the terms contributing to this part. More...
 
ComplexType operator() (ComplexType z) const
 
ComplexType operator() (long MatsubaraNumber) const
 
ComplexType of_tau (RealType tau) const
 
- Public Member Functions inherited from Pomerol::Thermal
 Thermal (RealType beta)
 

Friends

std::ostream & operator<< (std::ostream &os, Term const &T)
 

Additional Inherited Members

- Data Fields inherited from Pomerol::Thermal
const RealType beta
 Inverse temperature \(\beta\). More...
 
const ComplexType MatsubaraSpacing
 Spacing between (imaginary) Matsubara frequencies, \(i\pi/\beta\). More...
 

Detailed Description

Part of a fermionic single-particle Matsubara Green's function.

It includes contributions from all matrix elements of the following form,

\[ \langle {\rm outer} | c | {\rm inner} \rangle\langle {\rm inner} | c^\dagger | {\rm outer} \rangle \]

with (inner, outer) being a certain pair of Hamiltonian's invariant subspaces. The contributions are stored as terms of the Lehmann representation, i.e. as fractions \(\frac{R}{z - P}\) with real poles \(P\) and complex residues \(R\). The latter are combinations of matrix elements and statistical weights.

Definition at line 48 of file GreensFunctionPart.hpp.

Constructor & Destructor Documentation

◆ GreensFunctionPart()

Pomerol::GreensFunctionPart::GreensFunctionPart ( MonomialOperatorPart const &  C,
MonomialOperatorPart const &  CX,
HamiltonianPart const &  HpartInner,
HamiltonianPart const &  HpartOuter,
DensityMatrixPart const &  DMpartInner,
DensityMatrixPart const &  DMpartOuter 
)

Constructor.

Parameters
[in]CPart of the annihilation operator \(c\).
[in]CXPart of the creation operator \(c^\dagger\).
[in]HpartInnerPart of the Hamiltonian corresponding to the 'inner' subspace.
[in]HpartOuterPart of the Hamiltonian corresponding to the 'outer' subspace.
[in]DMpartInnerPart of the many-body density matrix \(\hat\rho\) corresponding to the 'inner' subspace.
[in]DMpartOuterPart of the many-body density matrix \(\hat\rho\) corresponding to the 'outer' subspace.

Member Function Documentation

◆ compute()

void Pomerol::GreensFunctionPart::compute ( )

Compute the terms contributing to this part.

◆ of_tau()

ComplexType Pomerol::GreensFunctionPart::of_tau ( RealType  tau) const
inline

Return the contribution to the imaginary-time Green's function made by this part.

Parameters
[in]tauImaginary time point.

Definition at line 208 of file GreensFunctionPart.hpp.

◆ operator()() [1/2]

ComplexType Pomerol::GreensFunctionPart::operator() ( ComplexType  z) const
inline

Substitute a complex frequency \(z\) into this part.

Parameters
[in]zValue of the frequency \(z\).

Definition at line 204 of file GreensFunctionPart.hpp.

◆ operator()() [2/2]

ComplexType Pomerol::GreensFunctionPart::operator() ( long  MatsubaraNumber) const
inline

Substitute a fermionic Matsubara frequency \(\omega_n\) into this part.

Parameters
[in]MatsubaraNumberIndex of the Matsubara frequency \(n\) ( \( \omega_n = \pi (2n + 1)/\beta \)).

Definition at line 200 of file GreensFunctionPart.hpp.

Friends And Related Function Documentation

◆ operator<<

std::ostream& operator<< ( std::ostream &  os,
Term const &  T 
)
friend

Output stream insertion operator.

Parameters
[out]osOutput stream.
[in]TTerm to be inserted.
Returns
Reference to the output stream.

Definition at line 149 of file GreensFunctionPart.hpp.


The documentation for this class was generated from the following file: