pomerol
2.1
|
Container for functions of three Matsubara frequencies. More...
#include <MatsubaraContainers.hpp>
Public Member Functions | |
MatsubaraContainer4 (SourceObject const &Source) | |
ComplexType | operator() (long MatsubaraNumber1, long MatsubaraNumber2, long MatsubaraNumber3) const |
void | fill (long NumberOfMatsubaras) |
long | getNumberOfMatsubaras () const |
Container for functions of three Matsubara frequencies.
Container class that stores values of a function \(f(i\omega_1,i\omega_2,i\omega_3)\), where \(\omega_1,\omega_2,\omega_3\) are three fermionic Matsubara frequencies.
SourceObject | Type of the source function object \(f\). |
Definition at line 35 of file MatsubaraContainers.hpp.
|
inlineexplicit |
Construct from a source function object. The container is initially empty and shall be populated with values by a subsequent call to fill().
[in] | Source | Source function object used to compute stored values. |
Definition at line 57 of file MatsubaraContainers.hpp.
|
inline |
Fill the container with precomputed values from the source function object. Each value is created by calling Source.value(MatsubaraNumber1,MatsubaraNumber2,MatsubaraNumber3).
[in] | NumberOfMatsubaras | Number of positive fermionic Matsubara frequencies \(\omega_1\) and \(\omega_2\) for which values are precomputed and stored. |
Definition at line 80 of file MatsubaraContainers.hpp.
|
inline |
Get the number of positive fermionic Matsubara frequencies \(\omega_1\) and \(\omega_2\) for which values are precomputed and stored.
Definition at line 75 of file MatsubaraContainers.hpp.
|
inline |
Return a value of the function for a combination of Matsubara frequencies \(\omega_1,\omega_2,\omega_3\). If value has not been precomputed for the given combination of frequencies, then Source.value(MatsubaraNumber1,MatsubaraNumber2,MatsubaraNumber3) will be called to obtain it.
[in] | MatsubaraNumber1 | Index \(n_1\) of Matsubara frequency \(\omega_1 = \pi(2n_1+1)/\beta.\). |
[in] | MatsubaraNumber2 | Index \(n_2\) of Matsubara frequency \(\omega_2 = \pi(2n_2+1)/\beta\). |
[in] | MatsubaraNumber3 | Index \(n_3\) of Matsubara frequency \(\omega_3 = \pi(2n_3+1)/\beta\). |
Definition at line 111 of file MatsubaraContainers.hpp.