pomerol  2.1
mpi_skel.hpp
Go to the documentation of this file.
1 //
2 // This file is part of pomerol, an exact diagonalization library aimed at
3 // solving condensed matter models of interacting fermions.
4 //
5 // Copyright (C) 2016-2025 A. Antipov, I. Krivenko and contributors
6 //
7 // This Source Code Form is subject to the terms of the Mozilla Public
8 // License, v. 2.0. If a copy of the MPL was not distributed with this
9 // file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
15 
16 #ifndef POMEROL_INCLUDE_MPI_DISPATCHER_MPI_SKEL_HPP
17 #define POMEROL_INCLUDE_MPI_DISPATCHER_MPI_SKEL_HPP
18 
19 #include "misc.hpp"
20 #include "mpi_dispatcher.hpp"
21 
22 #include <algorithm>
23 #include <cstddef>
24 #include <iostream>
25 #include <map>
26 #include <memory>
27 #include <numeric>
28 #include <tuple>
29 #include <vector>
30 
31 namespace pMPI {
32 
35 
39 template <typename PartType> struct ComputeWrap {
41  PartType& x;
44 
48  explicit ComputeWrap(PartType& x, int complexity = 1) : x(x), complexity(complexity) {}
50  void run() { x.compute(); }
51 };
52 
56 template <typename PartType> struct PrepareWrap {
58  PartType& x;
61 
65  explicit PrepareWrap(PartType& x, int complexity = 1) : x(x), complexity(complexity) {}
67  void run() { x.prepare(); }
68 };
69 
73 template <typename WrapType> struct mpi_skel {
75  std::vector<WrapType> parts;
81  std::map<pMPI::JobId, pMPI::WorkerId> run(MPI_Comm const& Comm, bool VerboseOutput = true);
82 };
83 
84 template <typename WrapType>
85 std::map<pMPI::JobId, pMPI::WorkerId> mpi_skel<WrapType>::run(MPI_Comm const& Comm, bool VerboseOutput) {
86  int comm_rank = pMPI::rank(Comm);
87  int comm_size = pMPI::size(Comm);
88  int const root = 0;
89  MPI_Barrier(Comm);
90 
91  if(comm_rank == root) {
92  std::cout << "Calculating " << parts.size() << " jobs using " << comm_size << " procs.\n";
93  }
94 
95  std::unique_ptr<pMPI::MPIMaster> disp;
96 
97  if(comm_rank == root) {
98  // prepare one Master on a root process for distributing parts.size() jobs
99  std::vector<pMPI::JobId> job_order(parts.size());
100  std::iota(job_order.begin(), job_order.end(), 0);
101 
102  auto comp1 = [this](std::size_t l, std::size_t r) -> int {
103  return (parts[l].complexity > parts[r].complexity);
104  };
105  std::sort(job_order.begin(), job_order.end(), comp1);
106  disp.reset(new pMPI::MPIMaster(Comm, job_order, true));
107  }
108 
109  MPI_Barrier(Comm);
110 
111  // Start calculating data
112  for(pMPI::MPIWorker worker(Comm, root); !worker.is_finished();) {
113  if(comm_rank == root)
114  disp->order();
115  worker.receive_order();
116  if(worker.is_working()) { // for a specific worker
117  JobId p = worker.current_job();
118  if(VerboseOutput)
119  std::cout << "[" << p + 1 << "/" << parts.size() << "] P" << comm_rank << " : part " << p << " ["
120  << parts[p].complexity << "] run;\n";
121  parts[p].run();
122  worker.report_job_done();
123  }
124  if(comm_rank == root)
125  disp->check_workers(); // check if there are free workers
126  }
127 
128  // at this moment all communication is finished
129  MPI_Barrier(Comm);
130  // Now spread the information, who did what.
131  if(VerboseOutput && comm_rank == root)
132  std::cout << "done.\n";
133 
134  MPI_Barrier(Comm);
135  std::map<pMPI::JobId, pMPI::WorkerId> job_map;
136  if(comm_rank == root) {
137  job_map = disp->DispatchMap;
138  long n_jobs = job_map.size();
139  std::vector<pMPI::JobId> jobs(n_jobs);
140  std::vector<pMPI::WorkerId> workers(n_jobs);
141 
142  auto it = job_map.cbegin();
143  for(int i = 0; i < n_jobs; ++i, ++it) {
144  std::tie(jobs[i], workers[i]) = *it;
145  }
146 
147  MPI_Bcast(&n_jobs, 1, MPI_LONG, root, Comm);
148  MPI_Bcast(jobs.data(), n_jobs, MPI_INT, root, Comm);
149  MPI_Bcast(workers.data(), n_jobs, MPI_INT, root, Comm);
150  } else {
151  long n_jobs;
152  MPI_Bcast(&n_jobs, 1, MPI_LONG, root, Comm);
153  std::vector<pMPI::JobId> jobs(n_jobs);
154  MPI_Bcast(jobs.data(), n_jobs, MPI_INT, root, Comm);
155  std::vector<pMPI::WorkerId> workers(n_jobs);
156  MPI_Bcast(workers.data(), n_jobs, MPI_INT, root, Comm);
157  for(std::size_t i = 0; i < n_jobs; ++i)
158  job_map[jobs[i]] = workers[i];
159  }
160  return job_map;
161 }
162 
164 
165 } // namespace pMPI
166 
167 #endif // #ifndef POMEROL_INCLUDE_MPI_DISPATCHER_MPI_SKEL_HPP
pMPI::PrepareWrap
Wrapper around a computable object that calls the prepare() method of the wrapped object and carries ...
Definition: mpi_skel.hpp:56
pMPI::ComputeWrap::complexity
int complexity
Complexity of a call to x.compute().
Definition: mpi_skel.hpp:43
pMPI::PrepareWrap::x
PartType & x
Reference to the wrapped object.
Definition: mpi_skel.hpp:58
pMPI::mpi_skel::parts
std::vector< WrapType > parts
List of wrappers.
Definition: mpi_skel.hpp:75
misc.hpp
Miscellaneous MPI-related functions.
pMPI::mpi_skel::run
std::map< pMPI::JobId, pMPI::WorkerId > run(MPI_Comm const &Comm, bool VerboseOutput=true)
Definition: mpi_skel.hpp:85
pMPI::ComputeWrap::ComputeWrap
ComputeWrap(PartType &x, int complexity=1)
Definition: mpi_skel.hpp:48
pMPI::MPIMaster
Abstraction of an MPI master process.
Definition: mpi_dispatcher.hpp:78
pMPI::ComputeWrap::x
PartType & x
Reference to the wrapped object.
Definition: mpi_skel.hpp:41
pMPI::MPIWorker::is_finished
bool is_finished()
Has this worker process finished execution.
pMPI::ComputeWrap::run
void run()
Call compute() of the wrapped object x.
Definition: mpi_skel.hpp:50
pMPI::rank
int rank(MPI_Comm const &Comm)
Definition: misc.hpp:36
pMPI::PrepareWrap::complexity
int complexity
Complexity of a call to x.prepare().
Definition: mpi_skel.hpp:60
mpi_dispatcher.hpp
A master-worker parallelization scheme using non-blocking MPI communications.
pMPI::ComputeWrap
Wrapper around a computable object that calls the compute() method of the wrapped object and carries ...
Definition: mpi_skel.hpp:39
pMPI::size
int size(MPI_Comm const &Comm)
Definition: misc.hpp:28
pMPI::MPIWorker
Abstraction of an MPI worker process.
Definition: mpi_dispatcher.hpp:44
pMPI::mpi_skel
This structure carries a list of wrappers and uses the mpi_dispatcher mechanism to distribute the wra...
Definition: mpi_skel.hpp:73
pMPI
A bunch of tools used for MPI-parallelization of computations.
Definition: misc.hpp:21
pMPI::PrepareWrap::run
void run()
Call prepare() of the wrapped object x.
Definition: mpi_skel.hpp:67
pMPI::PrepareWrap::PrepareWrap
PrepareWrap(PartType &x, int complexity=1)
Definition: mpi_skel.hpp:65
pMPI::JobId
int JobId
ID of a job.
Definition: mpi_dispatcher.hpp:39