pomerol
2.1
|
Functions | |
RealExpr | Pomerol::LatticePresets::CoulombS (std::string const &Label, RealType U, RealType Eps, unsigned short NOrbitals=1) |
ComplexExpr | Pomerol::LatticePresets::CoulombS (std::string const &Label, ComplexType U, ComplexType Eps, unsigned short NOrbitals=1) |
RealExpr | Pomerol::LatticePresets::CoulombP (std::string const &Label, RealType U, RealType U_p, RealType J, RealType Eps, unsigned short NOrbitals=3) |
ComplexExpr | Pomerol::LatticePresets::CoulombP (std::string const &Label, ComplexType U, ComplexType U_p, ComplexType J, ComplexType Eps, unsigned short NOrbitals=3) |
RealExpr | Pomerol::LatticePresets::CoulombP (std::string const &Label, RealType U, RealType J, RealType Eps, unsigned short NOrbitals=3) |
ComplexExpr | Pomerol::LatticePresets::CoulombP (std::string const &Label, ComplexType U, ComplexType J, ComplexType Eps, unsigned short NOrbitals=3) |
ComplexExpr Pomerol::LatticePresets::CoulombP | ( | std::string const & | Label, |
ComplexType | U, | ||
ComplexType | J, | ||
ComplexType | Eps, | ||
unsigned short | NOrbitals = 3 |
||
) |
Make a Hubbard-Kanamori interaction term of the following form,
\[ U \sum_{\alpha, \sigma > \sigma'} n_{i\alpha\sigma}n_{i\alpha\sigma'} + (U-2J) \sum_{\alpha\neq\alpha',\sigma > \sigma'} n_{i\alpha\sigma} n_{i\alpha'\sigma'} + \frac{U-3J}{2} \sum_{\alpha\neq\alpha',\sigma} n_{i\alpha\sigma} n_{i\alpha'\sigma} - J \sum_{\alpha\neq\alpha',\sigma > \sigma'} (c^\dagger_{i\alpha \sigma} c^\dagger_{i\alpha'\sigma'}c_{i\alpha'\sigma}c_{i\alpha\sigma'} + c^\dagger_{i\alpha'\sigma}c^\dagger_{i\alpha'\sigma'}c_{i\alpha\sigma}c_{i\alpha\sigma'}) + \varepsilon \sum_{\alpha,\sigma} n_{i\alpha\sigma} \]
with complex interaction constants \(U\), \(J\) and a complex energy level \(\varepsilon\). The number of orbitals must be at least 2.
[in] | Label | Lattice site \(i\). |
[in] | U | Hubbard-Kanamori interaction constant \(U\). |
[in] | J | Hund's coupling \(J\). |
[in] | Eps | Energy level \(\varepsilon\). |
[in] | NOrbitals | Number of orbitals \(\alpha, \alpha'\) to sum over. |
ComplexExpr Pomerol::LatticePresets::CoulombP | ( | std::string const & | Label, |
ComplexType | U, | ||
ComplexType | U_p, | ||
ComplexType | J, | ||
ComplexType | Eps, | ||
unsigned short | NOrbitals = 3 |
||
) |
Make a Hubbard-Kanamori interaction term of the following form,
\[ U \sum_{\alpha, \sigma > \sigma'} n_{i\alpha\sigma}n_{i\alpha\sigma'} + U' \sum_{\alpha\neq\alpha',\sigma > \sigma'} n_{i\alpha\sigma} n_{i\alpha'\sigma'} + \frac{U'-J}{2} \sum_{\alpha\neq\alpha',\sigma} n_{i\alpha\sigma} n_{i\alpha'\sigma} - J \sum_{\alpha\neq\alpha',\sigma > \sigma'} (c^\dagger_{i\alpha \sigma} c^\dagger_{i\alpha'\sigma'}c_{i\alpha'\sigma}c_{i\alpha\sigma'} + c^\dagger_{i\alpha'\sigma}c^\dagger_{i\alpha'\sigma'}c_{i\alpha\sigma}c_{i\alpha\sigma'}) + \varepsilon \sum_{\alpha,\sigma} n_{i\alpha\sigma} \]
with complex interaction constants \(U\), \(U_p\), \(J\) and a complex energy level \(\varepsilon\). The number of orbitals must be at least 2.
[in] | Label | Lattice site \(i\). |
[in] | U | Hubbard-Kanamori interaction constant \(U\). |
[in] | U_p | Hubbard-Kanamori interaction constant \(U_p\). |
[in] | J | Hund's coupling \(J\). |
[in] | Eps | Energy level \(\varepsilon\). |
[in] | NOrbitals | Number of orbitals \(\alpha, \alpha'\) to sum over. |
RealExpr Pomerol::LatticePresets::CoulombP | ( | std::string const & | Label, |
RealType | U, | ||
RealType | J, | ||
RealType | Eps, | ||
unsigned short | NOrbitals = 3 |
||
) |
Make a Hubbard-Kanamori interaction term of the following form,
\[ U \sum_{\alpha, \sigma > \sigma'} n_{i\alpha\sigma}n_{i\alpha\sigma'} + (U-2J) \sum_{\alpha\neq\alpha',\sigma > \sigma'} n_{i\alpha\sigma} n_{i\alpha'\sigma'} + \frac{U-3J}{2} \sum_{\alpha\neq\alpha',\sigma} n_{i\alpha\sigma} n_{i\alpha'\sigma} - J \sum_{\alpha\neq\alpha',\sigma > \sigma'} (c^\dagger_{i\alpha \sigma} c^\dagger_{i\alpha'\sigma'}c_{i\alpha'\sigma}c_{i\alpha\sigma'} + c^\dagger_{i\alpha'\sigma}c^\dagger_{i\alpha'\sigma'}c_{i\alpha\sigma}c_{i\alpha\sigma'}) + \varepsilon \sum_{\alpha,\sigma} n_{i\alpha\sigma} \]
with real interaction constants \(U\), \(J\) and a real energy level \(\varepsilon\). The number of orbitals must be at least 2.
[in] | Label | Lattice site \(i\). |
[in] | U | Hubbard-Kanamori interaction constant \(U\). |
[in] | J | Hund's coupling \(J\). |
[in] | Eps | Energy level \(\varepsilon\). |
[in] | NOrbitals | Number of orbitals \(\alpha, \alpha'\) to sum over. |
RealExpr Pomerol::LatticePresets::CoulombP | ( | std::string const & | Label, |
RealType | U, | ||
RealType | U_p, | ||
RealType | J, | ||
RealType | Eps, | ||
unsigned short | NOrbitals = 3 |
||
) |
Make a Hubbard-Kanamori interaction term of the following form,
\[ U \sum_{\alpha, \sigma > \sigma'} n_{i\alpha\sigma}n_{i\alpha\sigma'} + U' \sum_{\alpha\neq\alpha',\sigma > \sigma'} n_{i\alpha\sigma} n_{i\alpha'\sigma'} + \frac{U'-J}{2} \sum_{\alpha\neq\alpha',\sigma} n_{i\alpha\sigma} n_{i\alpha'\sigma} - J \sum_{\alpha\neq\alpha',\sigma > \sigma'} (c^\dagger_{i\alpha \sigma} c^\dagger_{i\alpha'\sigma'}c_{i\alpha'\sigma}c_{i\alpha\sigma'} + c^\dagger_{i\alpha'\sigma}c^\dagger_{i\alpha'\sigma'}c_{i\alpha\sigma}c_{i\alpha\sigma'}) + \varepsilon \sum_{\alpha,\sigma} n_{i\alpha\sigma} \]
with real interaction constants \(U\), \(U_p\), \(J\) and a real energy level \(\varepsilon\). The number of orbitals must be at least 2.
[in] | Label | Lattice site \(i\). |
[in] | U | Hubbard-Kanamori interaction constant \(U\). |
[in] | U_p | Hubbard-Kanamori interaction constant \(U_p\). |
[in] | J | Hund's coupling \(J\). |
[in] | Eps | Energy level \(\varepsilon\). |
[in] | NOrbitals | Number of orbitals \(\alpha, \alpha'\) to sum over. |
ComplexExpr Pomerol::LatticePresets::CoulombS | ( | std::string const & | Label, |
ComplexType | U, | ||
ComplexType | Eps, | ||
unsigned short | NOrbitals = 1 |
||
) |
Make a Coulomb interaction term of the following form,
\[ U \sum_\alpha n_{i\alpha\uparrow} n_{i\alpha\downarrow} + \varepsilon \sum_{\alpha,\sigma} n_{i\alpha\sigma} \]
with a complex interaction constant \(U\) and a complex energy level \(\varepsilon\).
[in] | Label | Lattice site \(i\). |
[in] | U | Interaction constant \(U\). |
[in] | Eps | Energy level \(\varepsilon\). |
[in] | NOrbitals | Number of orbitals \(\alpha\) to sum over. |
RealExpr Pomerol::LatticePresets::CoulombS | ( | std::string const & | Label, |
RealType | U, | ||
RealType | Eps, | ||
unsigned short | NOrbitals = 1 |
||
) |
Make a Coulomb interaction term of the following form,
\[ U \sum_\alpha n_{i\alpha\uparrow} n_{i\alpha\downarrow} + \varepsilon \sum_{\alpha,\sigma} n_{i\alpha\sigma} \]
with a real interaction constant \(U\) and a real energy level \(\varepsilon\).
[in] | Label | Lattice site \(i\). |
[in] | U | Interaction constant \(U\). |
[in] | Eps | Energy level \(\varepsilon\). |
[in] | NOrbitals | Number of orbitals \(\alpha\) to sum over. |