pomerol  2.1
Functions
Factory functions for fermionic hopping terms
Collaboration diagram for Factory functions for fermionic hopping terms:

Functions

RealExpr Pomerol::LatticePresets::Hopping (std::string const &Label1, std::string const &Label2, RealType t, unsigned short Orbital1, unsigned short Orbital2, spin Spin1, spin Spin2)
 
ComplexExpr Pomerol::LatticePresets::Hopping (std::string const &Label1, std::string const &Label2, ComplexType t, unsigned short Orbital1, unsigned short Orbital2, spin Spin1, spin Spin2)
 
RealExpr Pomerol::LatticePresets::Hopping (std::string const &Label1, std::string const &Label2, RealType t, unsigned short Orbital, spin Spin)
 
ComplexExpr Pomerol::LatticePresets::Hopping (std::string const &Label1, std::string const &Label2, ComplexType t, unsigned short Orbital, spin Spin)
 
RealExpr Pomerol::LatticePresets::Hopping (std::string const &Label1, std::string const &Label2, RealType t, unsigned short Orbital1, unsigned short Orbital2)
 
ComplexExpr Pomerol::LatticePresets::Hopping (std::string const &Label1, std::string const &Label2, ComplexType t, unsigned short Orbital1, unsigned short Orbital2)
 
RealExpr Pomerol::LatticePresets::Hopping (std::string const &Label1, std::string const &Label2, RealType t, unsigned short NOrbitals=1)
 
ComplexExpr Pomerol::LatticePresets::Hopping (std::string const &Label1, std::string const &Label2, ComplexType t, unsigned short NOrbitals=1)
 

Detailed Description

Function Documentation

◆ Hopping() [1/8]

ComplexExpr Pomerol::LatticePresets::Hopping ( std::string const &  Label1,
std::string const &  Label2,
ComplexType  t,
unsigned short  NOrbitals = 1 
)

Make a fermionic hopping term \(t \sum_{\alpha\sigma} c^\dagger_{i\alpha\sigma}c_{j\alpha\sigma} + h.c.\) between two lattice sites \(i \neq j\) with a complex hopping matrix element.

Parameters
[in]Label1The first lattice site \(i\) connected by this term.
[in]Label2The second lattice site \(j\) connected by this term.
[in]tHopping matrix element \(t\).
[in]NOrbitalsNumber of orbitals \(\alpha\) to sum over.

◆ Hopping() [2/8]

ComplexExpr Pomerol::LatticePresets::Hopping ( std::string const &  Label1,
std::string const &  Label2,
ComplexType  t,
unsigned short  Orbital,
spin  Spin 
)

Make a fermionic hopping term \(t c^\dagger_{i\alpha\sigma}c_{j\alpha\sigma} + h.c.\) between two lattice sites \(i \neq j\) with a complex hopping matrix element.

Parameters
[in]Label1The first lattice site \(i\) connected by this term.
[in]Label2The second lattice site \(j\) connected by this term.
[in]tHopping matrix element \(t\).
[in]OrbitalOrbital index \(\alpha\).
[in]SpinSpin component \(\sigma\).

◆ Hopping() [3/8]

ComplexExpr Pomerol::LatticePresets::Hopping ( std::string const &  Label1,
std::string const &  Label2,
ComplexType  t,
unsigned short  Orbital1,
unsigned short  Orbital2 
)

Make a fermionic hopping term \(t \sum_\sigma c^\dagger_{i\alpha_1\sigma}c_{j\alpha_2\sigma} + h.c.\) between two lattice sites \(i \neq j\) with a complex hopping matrix element.

Parameters
[in]Label1The first lattice site \(i\) connected by this term.
[in]Label2The second lattice site \(j\) connected by this term.
[in]tHopping matrix element \(t\).
[in]Orbital1Orbital index \(\alpha_1\) on site \(i\) connected by this term.
[in]Orbital2Orbital index \(\alpha_2\) on site \(j\) connected by this term.

◆ Hopping() [4/8]

ComplexExpr Pomerol::LatticePresets::Hopping ( std::string const &  Label1,
std::string const &  Label2,
ComplexType  t,
unsigned short  Orbital1,
unsigned short  Orbital2,
spin  Spin1,
spin  Spin2 
)

Make a fermionic hopping term \(t c^\dagger_{i\alpha_1\sigma_1}c_{j\alpha_2\sigma_2} + h.c.\) between two lattice sites \(i \neq j\) with a complex hopping matrix element.

Parameters
[in]Label1The first lattice site \(i\) connected by this term.
[in]Label2The second lattice site \(j\) connected by this term.
[in]tHopping matrix element \(t\).
[in]Orbital1Orbital index \(\alpha_1\) on site \(i\) connected by this term.
[in]Orbital2Orbital index \(\alpha_2\) on site \(j\) connected by this term.
[in]Spin1Spin component \(\sigma_1\) on site \(i\) connected by this term.
[in]Spin2Spin component \(\sigma_2\) on site \(j\) connected by this term.

◆ Hopping() [5/8]

RealExpr Pomerol::LatticePresets::Hopping ( std::string const &  Label1,
std::string const &  Label2,
RealType  t,
unsigned short  NOrbitals = 1 
)

Make a fermionic hopping term \(t \sum_{\alpha\sigma} c^\dagger_{i\alpha\sigma}c_{j\alpha\sigma} + h.c.\) between two lattice sites \(i \neq j\) with a real hopping matrix element.

Parameters
[in]Label1The first lattice site \(i\) connected by this term.
[in]Label2The second lattice site \(j\) connected by this term.
[in]tHopping matrix element \(t\).
[in]NOrbitalsNumber of orbitals \(\alpha\) to sum over.

◆ Hopping() [6/8]

RealExpr Pomerol::LatticePresets::Hopping ( std::string const &  Label1,
std::string const &  Label2,
RealType  t,
unsigned short  Orbital,
spin  Spin 
)

Make a fermionic hopping term \(t c^\dagger_{i\alpha\sigma}c_{j\alpha\sigma} + h.c.\) between two lattice sites \(i \neq j\) with a real hopping matrix element.

Parameters
[in]Label1The first lattice site \(i\) connected by this term.
[in]Label2The second lattice site \(j\) connected by this term.
[in]tHopping matrix element \(t\).
[in]OrbitalOrbital index \(\alpha\).
[in]SpinSpin component \(\sigma\).

◆ Hopping() [7/8]

RealExpr Pomerol::LatticePresets::Hopping ( std::string const &  Label1,
std::string const &  Label2,
RealType  t,
unsigned short  Orbital1,
unsigned short  Orbital2 
)

Make a fermionic hopping term \(t \sum_\sigma c^\dagger_{i\alpha_1\sigma}c_{j\alpha_2\sigma} + h.c.\) between two lattice sites \(i \neq j\) with a real hopping matrix element.

Parameters
[in]Label1The first lattice site \(i\) connected by this term.
[in]Label2The second lattice site \(j\) connected by this term.
[in]tHopping matrix element \(t\).
[in]Orbital1Orbital index \(\alpha_1\) on site \(i\) connected by this term.
[in]Orbital2Orbital index \(\alpha_2\) on site \(j\) connected by this term.

◆ Hopping() [8/8]

RealExpr Pomerol::LatticePresets::Hopping ( std::string const &  Label1,
std::string const &  Label2,
RealType  t,
unsigned short  Orbital1,
unsigned short  Orbital2,
spin  Spin1,
spin  Spin2 
)

Make a fermionic hopping term \(t c^\dagger_{i\alpha_1\sigma_1}c_{j\alpha_2\sigma_2} + h.c.\) between two lattice sites \(i \neq j\) with a real hopping matrix element.

Parameters
[in]Label1The first lattice site \(i\) connected by this term.
[in]Label2The second lattice site \(j\) connected by this term.
[in]tHopping matrix element \(t\).
[in]Orbital1Orbital index \(\alpha_1\) on site \(i\) connected by this term.
[in]Orbital2Orbital index \(\alpha_2\) on site \(j\) connected by this term.
[in]Spin1Spin component \(\sigma_1\) on site \(i\) connected by this term.
[in]Spin2Spin component \(\sigma_2\) on site \(j\) connected by this term.