|
pomerol
2.2
|

Functions | |
| RealExpr | Pomerol::LatticePresets::Level (std::string const &Label, RealType Eps, unsigned short Orbital, spin Spin) |
| ComplexExpr | Pomerol::LatticePresets::Level (std::string const &Label, ComplexType Eps, unsigned short Orbital, spin Spin) |
| RealExpr | Pomerol::LatticePresets::Level (std::string const &Label, RealType Eps, unsigned short NOrbitals=1) |
| ComplexExpr | Pomerol::LatticePresets::Level (std::string const &Label, ComplexType Eps, unsigned short NOrbitals=1) |
| ComplexExpr Pomerol::LatticePresets::Level | ( | std::string const & | Label, |
| ComplexType | Eps, | ||
| unsigned short | NOrbitals = 1 |
||
| ) |
Make a sum of complex energy fermionic terms \( \sum\limits_{\alpha, \sigma} \varepsilon c^{\dagger}_{i\alpha\sigma}c_{i\alpha\sigma}\).
| [in] | Label | Site label \(i\). |
| [in] | Eps | Energy level \(\varepsilon\). |
| [in] | NOrbitals | Number of orbitals \(\alpha\) to sum over. |
| ComplexExpr Pomerol::LatticePresets::Level | ( | std::string const & | Label, |
| ComplexType | Eps, | ||
| unsigned short | Orbital, | ||
| spin | Spin | ||
| ) |
Make a single energy level term \(\varepsilon c^{\dagger}_{i\alpha\sigma}c_{i\alpha\sigma}\) for a fermion on a given site for a given spin and orbital.
| [in] | Label | Site label \(i\). |
| [in] | Eps | Complex energy level \(\varepsilon\). |
| [in] | Orbital | Orbital index \(\alpha\). |
| [in] | Spin | Spin component \(\sigma\). |
| RealExpr Pomerol::LatticePresets::Level | ( | std::string const & | Label, |
| RealType | Eps, | ||
| unsigned short | NOrbitals = 1 |
||
| ) |
Make a sum of real energy fermionic terms \( \sum\limits_{\alpha, \sigma} \varepsilon c^{\dagger}_{i\alpha\sigma}c_{i\alpha\sigma}\).
| [in] | Label | Site label \(i\). |
| [in] | Eps | Energy level \(\varepsilon\). |
| [in] | NOrbitals | Number of orbitals \(\alpha\) to sum over. |
| RealExpr Pomerol::LatticePresets::Level | ( | std::string const & | Label, |
| RealType | Eps, | ||
| unsigned short | Orbital, | ||
| spin | Spin | ||
| ) |
Make a single energy level term \(\varepsilon c^{\dagger}_{i\alpha\sigma}c_{i\alpha\sigma}\) for a fermion on a given site for a given spin and orbital.
| [in] | Label | Site label \(i\). |
| [in] | Eps | Real energy level \(\varepsilon\). |
| [in] | Orbital | Orbital index \(\alpha\). |
| [in] | Spin | Spin component \(\sigma\). |