pomerol
2.2
|
Functions | |
RealExpr | Pomerol::LatticePresets::Pairing (std::string const &Label1, std::string const &Label2, RealType Delta, unsigned short Orbital1, unsigned short Orbital2, spin Spin1, spin Spin2) |
ComplexExpr | Pomerol::LatticePresets::Pairing (std::string const &Label1, std::string const &Label2, ComplexType Delta, unsigned short Orbital1, unsigned short Orbital2, spin Spin1, spin Spin2) |
RealExpr | Pomerol::LatticePresets::Pairing (std::string const &Label1, std::string const &Label2, RealType Delta, unsigned short Orbital1, unsigned short Orbital2) |
ComplexExpr | Pomerol::LatticePresets::Pairing (std::string const &Label1, std::string const &Label2, ComplexType Delta, unsigned short Orbital1, unsigned short Orbital2) |
RealExpr | Pomerol::LatticePresets::Pairing (std::string const &Label, RealType Delta, unsigned short NOrbitals=1) |
ComplexExpr | Pomerol::LatticePresets::Pairing (std::string const &Label, ComplexType Delta, unsigned short NOrbitals=1) |
ComplexExpr Pomerol::LatticePresets::Pairing | ( | std::string const & | Label, |
ComplexType | Delta, | ||
unsigned short | NOrbitals = 1 |
||
) |
Make a local pairing term \(\Delta \sum_\alpha c^\dagger_{i\alpha\uparrow}c^\dagger_{i\alpha\downarrow} + h.c.\) with a complex pairing amplitude \(\Delta\).
[in] | Label | The lattice site \(i\). |
[in] | Delta | Pairing amplitude \(\Delta\). |
[in] | NOrbitals | Number of orbitals \(\alpha\) to sum over. |
RealExpr Pomerol::LatticePresets::Pairing | ( | std::string const & | Label, |
RealType | Delta, | ||
unsigned short | NOrbitals = 1 |
||
) |
Make a local pairing term \(\Delta \sum_\alpha c^\dagger_{i\alpha\uparrow}c^\dagger_{i\alpha\downarrow} + h.c.\) with a real pairing amplitude \(\Delta\).
[in] | Label | The lattice site \(i\). |
[in] | Delta | Pairing amplitude \(\Delta\). |
[in] | NOrbitals | Number of orbitals \(\alpha\) to sum over. |
ComplexExpr Pomerol::LatticePresets::Pairing | ( | std::string const & | Label1, |
std::string const & | Label2, | ||
ComplexType | Delta, | ||
unsigned short | Orbital1, | ||
unsigned short | Orbital2 | ||
) |
Make a pairing term \(\Delta c^\dagger_{i\alpha_1\uparrow}c^\dagger_{j\alpha_2\downarrow} + h.c.\) with a complex pairing amplitude \(\Delta\).
[in] | Label1 | The first lattice site \(i\). |
[in] | Label2 | The second lattice site \(j\). |
[in] | Delta | Pairing amplitude \(\Delta\). |
[in] | Orbital1 | Orbital index \(\alpha_1\) on site \(i\). |
[in] | Orbital2 | Orbital index \(\alpha_2\) on site \(j\). |
ComplexExpr Pomerol::LatticePresets::Pairing | ( | std::string const & | Label1, |
std::string const & | Label2, | ||
ComplexType | Delta, | ||
unsigned short | Orbital1, | ||
unsigned short | Orbital2, | ||
spin | Spin1, | ||
spin | Spin2 | ||
) |
Make a pairing term \(\Delta c^\dagger_{i\alpha_1\sigma_1}c^\dagger_{j\alpha_2\sigma_2} + h.c.\) with a complex pairing amplitude \(\Delta\).
[in] | Label1 | The first lattice site \(i\). |
[in] | Label2 | The second lattice site \(j\). |
[in] | Delta | Pairing amplitude \(\Delta\). |
[in] | Orbital1 | Orbital index \(\alpha_1\) on site \(i\). |
[in] | Orbital2 | Orbital index \(\alpha_2\) on site \(j\). |
[in] | Spin1 | Spin component \(\sigma_1\) on site \(i\). |
[in] | Spin2 | Spin component \(\sigma_2\) on site \(j\). |
RealExpr Pomerol::LatticePresets::Pairing | ( | std::string const & | Label1, |
std::string const & | Label2, | ||
RealType | Delta, | ||
unsigned short | Orbital1, | ||
unsigned short | Orbital2 | ||
) |
Make a pairing term \(\Delta c^\dagger_{i\alpha_1\uparrow}c^\dagger_{j\alpha_2\downarrow} + h.c.\) with a real pairing amplitude \(\Delta\).
[in] | Label1 | The first lattice site \(i\). |
[in] | Label2 | The second lattice site \(j\). |
[in] | Delta | Pairing amplitude \(\Delta\). |
[in] | Orbital1 | Orbital index \(\alpha_1\) on site \(i\). |
[in] | Orbital2 | Orbital index \(\alpha_2\) on site \(j\). |
RealExpr Pomerol::LatticePresets::Pairing | ( | std::string const & | Label1, |
std::string const & | Label2, | ||
RealType | Delta, | ||
unsigned short | Orbital1, | ||
unsigned short | Orbital2, | ||
spin | Spin1, | ||
spin | Spin2 | ||
) |
Make a pairing term \(\Delta c^\dagger_{i\alpha_1\sigma_1}c^\dagger_{j\alpha_2\sigma_2} + h.c.\) with a real pairing amplitude \(\Delta\).
[in] | Label1 | The first lattice site \(i\). |
[in] | Label2 | The second lattice site \(j\). |
[in] | Delta | Pairing amplitude \(\Delta\). |
[in] | Orbital1 | Orbital index \(\alpha_1\) on site \(i\). |
[in] | Orbital2 | Orbital index \(\alpha_2\) on site \(j\). |
[in] | Spin1 | Spin component \(\sigma_1\) on site \(i\). |
[in] | Spin2 | Spin component \(\sigma_2\) on site \(j\). |