pomerol
2.1
|
Functions | |
RealExpr | Pomerol::LatticePresets::SplusSminus (std::string const &Label1, std::string const &Label2, RealType J, unsigned short Orbital) |
ComplexExpr | Pomerol::LatticePresets::SplusSminus (std::string const &Label1, std::string const &Label2, ComplexType J, unsigned short Orbital) |
RealExpr | Pomerol::LatticePresets::SminusSplus (std::string const &Label1, std::string const &Label2, RealType J, unsigned short Orbital) |
ComplexExpr | Pomerol::LatticePresets::SminusSplus (std::string const &Label1, std::string const &Label2, ComplexType J, unsigned short Orbital) |
RealExpr | Pomerol::LatticePresets::SzSz (std::string const &Label1, std::string const &Label2, RealType J, unsigned short NOrbitals=1) |
ComplexExpr | Pomerol::LatticePresets::SzSz (std::string const &Label1, std::string const &Label2, ComplexType J, unsigned short NOrbitals=1) |
RealExpr | Pomerol::LatticePresets::SS (std::string const &Label1, std::string const &Label2, RealType J, unsigned short NOrbitals=1) |
ComplexExpr | Pomerol::LatticePresets::SS (std::string const &Label1, std::string const &Label2, ComplexType J, unsigned short NOrbitals=1) |
ComplexExpr Pomerol::LatticePresets::SminusSplus | ( | std::string const & | Label1, |
std::string const & | Label2, | ||
ComplexType | J, | ||
unsigned short | Orbital | ||
) |
Make a fermionic \(S_- S_+\)-coupling term \(J S_{-,i\alpha} S_{+,j\alpha} = J c^\dagger_{i\alpha\downarrow} c_{i\alpha\uparrow} c^\dagger_{j\alpha\uparrow} c_{j\alpha\downarrow}\) with a complex exchange constant \(J\).
[in] | Label1 | The first lattice site \(i\). |
[in] | Label2 | The second lattice site \(j\). |
[in] | J | Exchange constant \(J\). |
[in] | Orbital | Orbital index \(\alpha\). |
RealExpr Pomerol::LatticePresets::SminusSplus | ( | std::string const & | Label1, |
std::string const & | Label2, | ||
RealType | J, | ||
unsigned short | Orbital | ||
) |
Make a fermionic \(S_- S_+\)-coupling term \(J S_{-,i\alpha} S_{+,j\alpha} = J c^\dagger_{i\alpha\downarrow} c_{i\alpha\uparrow} c^\dagger_{j\alpha\uparrow} c_{j\alpha\downarrow}\) with a real exchange constant \(J\).
[in] | Label1 | The first lattice site \(i\). |
[in] | Label2 | The second lattice site \(j\). |
[in] | J | Exchange constant \(J\). |
[in] | Orbital | Orbital index \(\alpha\). |
ComplexExpr Pomerol::LatticePresets::SplusSminus | ( | std::string const & | Label1, |
std::string const & | Label2, | ||
ComplexType | J, | ||
unsigned short | Orbital | ||
) |
Make a fermionic \(S_+ S_-\)-coupling term \(J S_{+,i\alpha} S_{-,j\alpha} = J c^\dagger_{i\alpha\uparrow} c_{i\alpha\downarrow} c^\dagger_{j\alpha\downarrow} c_{j\alpha\uparrow}\) with a complex exchange constant \(J\).
[in] | Label1 | The first lattice site \(i\). |
[in] | Label2 | The second lattice site \(j\). |
[in] | J | Exchange constant \(J\). |
[in] | Orbital | Orbital index \(\alpha\). |
RealExpr Pomerol::LatticePresets::SplusSminus | ( | std::string const & | Label1, |
std::string const & | Label2, | ||
RealType | J, | ||
unsigned short | Orbital | ||
) |
Make a fermionic \(S_+ S_-\)-coupling term \(J S_{+,i\alpha} S_{-,j\alpha} = J c^\dagger_{i\alpha\uparrow} c_{i\alpha\downarrow} c^\dagger_{j\alpha\downarrow} c_{j\alpha\uparrow}\) with a real exchange constant \(J\).
[in] | Label1 | The first lattice site \(i\). |
[in] | Label2 | The second lattice site \(j\). |
[in] | J | Exchange constant \(J\). |
[in] | Orbital | Orbital index \(\alpha\). |
ComplexExpr Pomerol::LatticePresets::SS | ( | std::string const & | Label1, |
std::string const & | Label2, | ||
ComplexType | J, | ||
unsigned short | NOrbitals = 1 |
||
) |
Make a fermionic \(\mathbf{S S}\)-coupling term
\[ J \mathbf{S}_{i} \mathbf{S}_{j} = J \sum_\alpha \left[ S_{z,i\alpha} S_{z,j\alpha} + \frac{1}{2} S_{+,i\alpha} S_{-,j\alpha} + \frac{1}{2} S_{-,i\alpha} S_{+,j\alpha}\right] \]
with a complex exchange constant \(J\).
[in] | Label1 | The first lattice site \(i\). |
[in] | Label2 | The second lattice site \(j\). |
[in] | J | Exchange constant \(J\). |
[in] | NOrbitals | Number of orbitals \(\alpha\) to sum over. |
RealExpr Pomerol::LatticePresets::SS | ( | std::string const & | Label1, |
std::string const & | Label2, | ||
RealType | J, | ||
unsigned short | NOrbitals = 1 |
||
) |
Make a fermionic \(\mathbf{S S}\)-coupling term
\[ J \mathbf{S}_{i} \mathbf{S}_{j} = J \sum_\alpha \left[ S_{z,i\alpha} S_{z,j\alpha} + \frac{1}{2} S_{+,i\alpha} S_{-,j\alpha} + \frac{1}{2} S_{-,i\alpha} S_{+,j\alpha}\right] \]
with a real exchange constant \(J\).
[in] | Label1 | The first lattice site \(i\). |
[in] | Label2 | The second lattice site \(j\). |
[in] | J | Exchange constant \(J\). |
[in] | NOrbitals | Number of orbitals \(\alpha\) to sum over. |
ComplexExpr Pomerol::LatticePresets::SzSz | ( | std::string const & | Label1, |
std::string const & | Label2, | ||
ComplexType | J, | ||
unsigned short | NOrbitals = 1 |
||
) |
Make a fermionic \(S_z S_z\)-coupling term
\[ J S_{z,i} S_{z,j} = \frac{J}{4} \sum_\alpha (n_{i\alpha\uparrow} - n_{i\alpha\downarrow}) (n_{j\alpha\uparrow} - n_{j\alpha\downarrow}) \]
with a complex exchange constant \(J\).
[in] | Label1 | The first lattice site \(i\). |
[in] | Label2 | The second lattice site \(j\). |
[in] | J | Exchange constant \(J\). |
[in] | NOrbitals | Number of orbitals \(\alpha\) to sum over. |
RealExpr Pomerol::LatticePresets::SzSz | ( | std::string const & | Label1, |
std::string const & | Label2, | ||
RealType | J, | ||
unsigned short | NOrbitals = 1 |
||
) |
Make a fermionic \(S_z S_z\)-coupling term
\[ J S_{z,i} S_{z,j} = \frac{J}{4} \sum_\alpha (n_{i\alpha\uparrow} - n_{i\alpha\downarrow}) (n_{j\alpha\uparrow} - n_{j\alpha\downarrow}) \]
with a real exchange constant \(J\).
[in] | Label1 | The first lattice site \(i\). |
[in] | Label2 | The second lattice site \(j\). |
[in] | J | Exchange constant \(J\). |
[in] | NOrbitals | Number of orbitals \(\alpha\) to sum over. |