pomerol  2.1
Functions
Factory functions for spin-flip and pair-hopping terms
Collaboration diagram for Factory functions for spin-flip and pair-hopping terms:

Functions

RealExpr Pomerol::LatticePresets::Spinflip (std::string const &Label, RealType J, unsigned short Orbital1, unsigned short Orbital2, spin Spin1=up, spin Spin2=down)
 
ComplexExpr Pomerol::LatticePresets::Spinflip (std::string const &Label, ComplexType J, unsigned short Orbital1, unsigned short Orbital2, spin Spin1=up, spin Spin2=down)
 
RealExpr Pomerol::LatticePresets::PairHopping (std::string const &Label, RealType J, unsigned short Orbital1, unsigned short Orbital2, spin Spin1=up, spin Spin2=down)
 
ComplexExpr Pomerol::LatticePresets::PairHopping (std::string const &Label, ComplexType J, unsigned short Orbital1, unsigned short Orbital2, spin Spin1=up, spin Spin2=down)
 

Detailed Description

Function Documentation

◆ PairHopping() [1/2]

ComplexExpr Pomerol::LatticePresets::PairHopping ( std::string const &  Label,
ComplexType  J,
unsigned short  Orbital1,
unsigned short  Orbital2,
spin  Spin1 = up,
spin  Spin2 = down 
)

Make a pair-hopping term \(J c^\dagger_{i\alpha_1\sigma_1}c^\dagger_{i\alpha_1\sigma_2}c_{i\alpha_2\sigma_1}c_{i\alpha_2\sigma_2}\), with \(\alpha_1 \neq \alpha_2, \sigma_1 \neq \sigma_2\) and a complex exchange constant \(J\).

Parameters
[in]LabelLattice site \(i\).
[in]JExchange constant \(J\).
[in]Orbital1Orbital index \(\alpha_1\).
[in]Orbital2Orbital index \(\alpha_2\).
[in]Spin1Spin component \(\sigma_1\).
[in]Spin2Spin component \(\sigma_2\).

◆ PairHopping() [2/2]

RealExpr Pomerol::LatticePresets::PairHopping ( std::string const &  Label,
RealType  J,
unsigned short  Orbital1,
unsigned short  Orbital2,
spin  Spin1 = up,
spin  Spin2 = down 
)

Make a pair-hopping term \(J c^\dagger_{i\alpha_1\sigma_1}c^\dagger_{i\alpha_1\sigma_2}c_{i\alpha_2\sigma_1}c_{i\alpha_2\sigma_2}\), with \(\alpha_1 \neq \alpha_2, \sigma_1 \neq \sigma_2\) and a real exchange constant \(J\).

Parameters
[in]LabelLattice site \(i\).
[in]JExchange constant \(J\).
[in]Orbital1Orbital index \(\alpha_1\).
[in]Orbital2Orbital index \(\alpha_2\).
[in]Spin1Spin component \(\sigma_1\).
[in]Spin2Spin component \(\sigma_2\).

◆ Spinflip() [1/2]

ComplexExpr Pomerol::LatticePresets::Spinflip ( std::string const &  Label,
ComplexType  J,
unsigned short  Orbital1,
unsigned short  Orbital2,
spin  Spin1 = up,
spin  Spin2 = down 
)

Make a spin-flip term \(J c^\dagger_{i\alpha_1\sigma_1}c^\dagger_{i\alpha_2\sigma_2}c_{i\alpha_2\sigma_1}c_{i\alpha_1\sigma_2}\), with \(\alpha_1 \neq \alpha_2, \sigma_1 \neq \sigma_2\) and a complex exchange constant \(J\).

Parameters
[in]LabelLattice site \(i\).
[in]JExchange constant \(J\).
[in]Orbital1Orbital index \(\alpha_1\).
[in]Orbital2Orbital index \(\alpha_2\).
[in]Spin1Spin component \(\sigma_1\).
[in]Spin2Spin component \(\sigma_2\).

◆ Spinflip() [2/2]

RealExpr Pomerol::LatticePresets::Spinflip ( std::string const &  Label,
RealType  J,
unsigned short  Orbital1,
unsigned short  Orbital2,
spin  Spin1 = up,
spin  Spin2 = down 
)

Make a spin-flip term \(J c^\dagger_{i\alpha_1\sigma_1}c^\dagger_{i\alpha_2\sigma_2}c_{i\alpha_2\sigma_1}c_{i\alpha_1\sigma_2}\), with \(\alpha_1 \neq \alpha_2, \sigma_1 \neq \sigma_2\) and a real exchange constant \(J\).

Parameters
[in]LabelLattice site \(i\).
[in]JExchange constant \(J\).
[in]Orbital1Orbital index \(\alpha_1\).
[in]Orbital2Orbital index \(\alpha_2\).
[in]Spin1Spin component \(\sigma_1\).
[in]Spin2Spin component \(\sigma_2\).