|
pomerol
2.2
|

Functions | |
| RealExpr | Pomerol::LatticePresets::Spinflip (std::string const &Label, RealType J, unsigned short Orbital1, unsigned short Orbital2, spin Spin1=up, spin Spin2=down) |
| ComplexExpr | Pomerol::LatticePresets::Spinflip (std::string const &Label, ComplexType J, unsigned short Orbital1, unsigned short Orbital2, spin Spin1=up, spin Spin2=down) |
| RealExpr | Pomerol::LatticePresets::PairHopping (std::string const &Label, RealType J, unsigned short Orbital1, unsigned short Orbital2, spin Spin1=up, spin Spin2=down) |
| ComplexExpr | Pomerol::LatticePresets::PairHopping (std::string const &Label, ComplexType J, unsigned short Orbital1, unsigned short Orbital2, spin Spin1=up, spin Spin2=down) |
| ComplexExpr Pomerol::LatticePresets::PairHopping | ( | std::string const & | Label, |
| ComplexType | J, | ||
| unsigned short | Orbital1, | ||
| unsigned short | Orbital2, | ||
| spin | Spin1 = up, |
||
| spin | Spin2 = down |
||
| ) |
Make a pair-hopping term \(J c^\dagger_{i\alpha_1\sigma_1}c^\dagger_{i\alpha_1\sigma_2}c_{i\alpha_2\sigma_1}c_{i\alpha_2\sigma_2}\), with \(\alpha_1 \neq \alpha_2, \sigma_1 \neq \sigma_2\) and a complex exchange constant \(J\).
| [in] | Label | Lattice site \(i\). |
| [in] | J | Exchange constant \(J\). |
| [in] | Orbital1 | Orbital index \(\alpha_1\). |
| [in] | Orbital2 | Orbital index \(\alpha_2\). |
| [in] | Spin1 | Spin component \(\sigma_1\). |
| [in] | Spin2 | Spin component \(\sigma_2\). |
| RealExpr Pomerol::LatticePresets::PairHopping | ( | std::string const & | Label, |
| RealType | J, | ||
| unsigned short | Orbital1, | ||
| unsigned short | Orbital2, | ||
| spin | Spin1 = up, |
||
| spin | Spin2 = down |
||
| ) |
Make a pair-hopping term \(J c^\dagger_{i\alpha_1\sigma_1}c^\dagger_{i\alpha_1\sigma_2}c_{i\alpha_2\sigma_1}c_{i\alpha_2\sigma_2}\), with \(\alpha_1 \neq \alpha_2, \sigma_1 \neq \sigma_2\) and a real exchange constant \(J\).
| [in] | Label | Lattice site \(i\). |
| [in] | J | Exchange constant \(J\). |
| [in] | Orbital1 | Orbital index \(\alpha_1\). |
| [in] | Orbital2 | Orbital index \(\alpha_2\). |
| [in] | Spin1 | Spin component \(\sigma_1\). |
| [in] | Spin2 | Spin component \(\sigma_2\). |
| ComplexExpr Pomerol::LatticePresets::Spinflip | ( | std::string const & | Label, |
| ComplexType | J, | ||
| unsigned short | Orbital1, | ||
| unsigned short | Orbital2, | ||
| spin | Spin1 = up, |
||
| spin | Spin2 = down |
||
| ) |
Make a spin-flip term \(J c^\dagger_{i\alpha_1\sigma_1}c^\dagger_{i\alpha_2\sigma_2}c_{i\alpha_2\sigma_1}c_{i\alpha_1\sigma_2}\), with \(\alpha_1 \neq \alpha_2, \sigma_1 \neq \sigma_2\) and a complex exchange constant \(J\).
| [in] | Label | Lattice site \(i\). |
| [in] | J | Exchange constant \(J\). |
| [in] | Orbital1 | Orbital index \(\alpha_1\). |
| [in] | Orbital2 | Orbital index \(\alpha_2\). |
| [in] | Spin1 | Spin component \(\sigma_1\). |
| [in] | Spin2 | Spin component \(\sigma_2\). |
| RealExpr Pomerol::LatticePresets::Spinflip | ( | std::string const & | Label, |
| RealType | J, | ||
| unsigned short | Orbital1, | ||
| unsigned short | Orbital2, | ||
| spin | Spin1 = up, |
||
| spin | Spin2 = down |
||
| ) |
Make a spin-flip term \(J c^\dagger_{i\alpha_1\sigma_1}c^\dagger_{i\alpha_2\sigma_2}c_{i\alpha_2\sigma_1}c_{i\alpha_1\sigma_2}\), with \(\alpha_1 \neq \alpha_2, \sigma_1 \neq \sigma_2\) and a real exchange constant \(J\).
| [in] | Label | Lattice site \(i\). |
| [in] | J | Exchange constant \(J\). |
| [in] | Orbital1 | Orbital index \(\alpha_1\). |
| [in] | Orbital2 | Orbital index \(\alpha_2\). |
| [in] | Spin1 | Spin component \(\sigma_1\). |
| [in] | Spin2 | Spin component \(\sigma_2\). |